Optimal convergence of a discontinuous-Galerkin-based immersed boundary method
نویسندگان
چکیده
منابع مشابه
Optimal convergence of a discontinuous-Galerkin-based immersed boundary method
We prove the optimal convergence of a discontinous-Galerkin-based immersed boundary method introduced earlier [Lew and Buscaglia, 2008]. By switching to a discontinuous Galerkin discretization near the boundary, this method overcomes the suboptimal convergence rate that may arise in immersed boundary methods when strongly imposing essential boundary conditions. We consider a model Poisson’s pro...
متن کاملA discontinuous-Galerkin-based immersed boundary method
A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of userdefined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous-Galerkin approximation and impo...
متن کاملQuasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method
We analyze an adaptive discontinuous finite element method (ADFEM) for symmetric second order linear elliptic operators. The method is formulated on nonconforming meshes made of simplices or quadrilaterals, with any polynomial degree and in any dimension ≥ 2. We prove that the ADFEM is a contraction for the sum of the energy error and the scaled error estimator, between two consecutive adaptive...
متن کاملConvergence of the Discontinuous Galerkin Method for Discontinuous Solutions
We consider linear first order scalar equations of the form ρt + div(ρv) + aρ = f with appropriate initial and boundary conditions. It is shown that approximate solutions computed using the discontinuous Galerkin method will converge in L[0, T ;L(Ω)] when the coefficients v and a and data f satisfy the minimal assumptions required to establish existence and uniqueness of solutions. In particula...
متن کاملHigher-order Immersed Discontinuous Galerkin Methods
We propose new discontinuous finite element methods that can be applied to one-dimensional elliptic problems with discontinuous coefficients. These methods are based on a class of higher degree immersed finite element spaces and can be used with a mesh independent of the location of coefficient discontinuity. Numerical experiments are presented to show that these methods can achieve optimal con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis
سال: 2010
ISSN: 0764-583X,1290-3841
DOI: 10.1051/m2an/2010069